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ABSTRACT 

 
The currently valid worldwide standards allow for taking 

into consideration plastic deformations in order to achieve a 
higher degree of utilization. The maximum plastic strains, 
which can be allowed for steel pipes subjected to internal 
pressure and additional loads, are particularly interesting. In 
this paper results of investigations on the elasto-plastic bearing 
behavior of steel pipelines subjected to internal pressure and 
bending are presented. Four-point bending tests on eight steel 
pipes were carried out in order to make the buckling analysis in 
the elasto-plastic range possible. Finite-element-models were 
checked by test results for the application on buried pipelines. 
Taking into account bedding conditions of the pipeline in the 
soil was made possible. Furthermore, an analytical method 
based on the differential equation for beams with longitudinal 
tensile force and variable bending stiffness was developed. It is 
suitable to determine the elasto-plastic bearing capacity for 
internal pressure and bending. The collapse due to plastic shell 
buckling is considered by a limit criterion based on critical 
strains. 

 
Keywords: pipeline; elasto-plastic; buckling; strain limit; 
analytical method; interaction pipe-soil 

 
 

INTRODUCTION 
 
The design of steel pipelines in Germany is based on an 

elastic stress analysis and the check against the permissible 
yield stress (DIN EN 1594). Principle of the analysis is to 
determine the stresses caused by internal pressure and 

additional loads during erection, operation and service life. To 
evaluate the biaxial state of stress the available stresses are 
summarized to the equivalent stress, which must not exceed the 
yield stress. 

The currently valid worldwide standards allow the 
consideration of plastic deformations in order to reach a higher 
degree of utilization. In several standards and publications limit 
states exist for pipelines loaded by combinations of internal 
pressure and bending. This paper focusses on the question, 
which maximum plastic strains can be allowed for typical 
tubular steel under internal pressure and additional loads, 
bearing in mind the demands for load-capacity, integrity and 
safety of pipelines. 

The aim of the research is to demonstrate the benefits of 
limit state design for high pressure pipelines based on the 
consideration of plastic strains and to add experimental and 
numerical data for the validation. Limit values satisfying the 
requirements for safety and economy have to be defined. 

 

NOMENCLATURE 
 
a Ovalisation at θ = π/2 and θ = 3π/2 
D Outer diameter 
Dmax Maximum measured diameter per pipe cross-section 
Dmin Minimum measured diameter per pipe cross-section 
E Young’s modulus 
F Reaction force 
∆o Initial out-of-roundness 
fu,k  Characteristic tensile strength 
fy,k  Characteristic yield strength 
I Moment of inertia of pipe cross-section 
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M Bending moment 
N Axial tensile force 
P Internal Pressure 
rm Average pipe radius 
r´ Radius of ovalised pipe 
t Nominal wall thickness 
u; uk Deformation, imposed deformation 
ů Deformation rate 
w(x) Deflection 
εel Elastic strain 
εpl Plastic strain 
εcr Critical strain 
κ(x) Curvature 
νel Poisson’s ratio in elastic range 
σL Longitudinal stress 
σZ; σD Longitudinal stress (Z = tension, D=compression)  
σΘ Hoop stress 
σv Equivalent stress 
σy Yield strength 
θ Circumferential angle 

 
 

SCALE MODEL TESTS 
 
A series of scale model tests (D/t = 132) was carried out to 

investigate the elasto-plastic bearing behavior of steel pipelines 
exposed to internal pressure and additional imposed bending 
deformation. The test setup as shown in Fig. 1 was used for this 
purpose.  
 

 
Figure 1: Test setup 
 

In principle, it is a classical four-point bending test. In 
order to avoid local failure at the point of load application, a 
construction with steel half-shells was realized. The shells were 
glued to the tension side of the test pipes using a two-
component epoxy resin adhesive. At these the test specimen is 
deformed in an upward direction. The ends of the pipes were 
simply supported. This test setup proved to be very well suited 
for the problem. 

The test pipes consist of steel welded with a longitudinal 
seam having a yield strength of fy,k = 220 N/mm² and a tensile 
strength of fu,k = 300 N/mm². The outer diameter is 
D = 66.1 mm and the wall thickness is t = 0.5 mm. The real 
stress-strain curve was determined by tension tests.  

The test pipes were produced and sponsored by a German 
company for pipe-systems. The origin of the pipes is a coil of 
coldformed steel with material number 1.0338 (EN 10027-2). 
Although the ratio D/t = 132 of these test pipes is not common 
for onshore pipelines the bearing behavior in elasto-plastic 
range and the effects of local buckling can also be observed for 
this thin walled pipe.  

At first two tests were carried out to calibrate the test 
equipment and to determine the ideal distance for the points of 
load application. The subsequent test series was then 
undertaken using a distance of 400 mm between the points of 
load application (see Fig. 1). Maximum stress is expected in the 
centre of the pipe. The distance of the points of load application 
is greater than 4D, so that local effects may have died out. 
Table 1 gives an overview over the test program. 

 
No. Internal 

Pressure
P [bar] 

Imposed 
Deflection
uk [mm] 

Remark 

1 0 35.0  
2 15 76.0  
3 15 67.5 Pressure drop to P = 0 and rebuild-

up to P = 15 bar 
4 25 112.0  
5 25 110.0 Pressure drop to P = 0 and rebuild-

up to P = 25 bar 
6 5 43.0  
7 30 130.0  
8 30 182.0 Pressure drop to P = 0 and rebuild-

up to P = 30 bar 
Table 1: Test Program 
 

The strains were evaluated using strain gauges attached to 
the test specimens. The internal pressure and the deformation of 
the pipe were recorded online by pressure sensors, inductive 
displacement transducers and potentiometers. The reaction 
force due to the imposed deflection was measured with two 
load cells. The internal pressure was applied via filling the 
pipes with water using a hand-operated pump. No leaks 
occurred in any of the tests carried out with partly marked local 
deformations and strains.  

 
 

NUMERICAL SOLUTION VERSUS TEST RESULTS  
 
The ovalisiation was measured at the pipes 1 to 8 before 

the tests beginning since this kind of imperfection has a great 
influence on the bearing behavior of tubular steels. The initial 
ovalisation was calculated using the formula: 
 

max min
o

max min

D D
D D

−
∆ =

+
     (1) 

 
The average value was ∆o = 1.0 %. The tests were carried 

out displacement-controlled, whereby pipe 1 was only 
subjected to bending and pipes 2 to 8 were subjected to bending 
and internal pressure (see Table 1). The horizontal and vertical 
deformations were measured using displacement transducers 
and potentiometers. Furthermore, load cells were located at 
both points of load application to measure the reaction forces 
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due to imposed deflection (see Fig. 1). In addition strain gauges 
were installed longitudinal and transverse to the pipes as well 
as a pressure gauge at one end cap of the pipe. 
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Figure 2: Force-Deflection curves for pipe 1 
 

The curve of reaction force (average value of the two load 
cells) is represented as a function of the vertical imposed 
deflection in Fig. 2 for pipe 1 (P = 0 bar). These parameters 
were chosen for the comparison with numerical solutions 
because the values of F and u were directly measured during 
the test. The deflection u was measured in the middle of the 
pipe length. The reaction force rises linearly at the beginning of 
the test up to the elastic yield strength is reached. The transition 
to the elasto-plastic range can be recognized at a deflection of 
approx. u = 16 mm by the non-linear curve progression. A 
reason for the difference between measured values and 
calculated values above F = 300 N could be residual stresses 
due to the production processes (welding, cold forming). These 
residual stresses are not considered in FE-models. In the event 
of a further increase in the imposed deflection shell buckling is 
initiated by existing geometrical and material imperfections. 
After the onset of local buckling has occurred, the global 
deflection u will continue, but more and more energy of the 
applied bending energy will be accumulated in the local buckle. 
Shortly after reaching the maximum moment bearing capacity 
(u = 35 mm, F = 400 N) a geometrical collapse occurs, whereby 
the buckle springs inwards near the middle of the pipe. 
Simultaneously there is a significant drop in the force-
deflection curve whereby a distinct reduction in the moment 
bearing capacity occurs. 

Numerical simulations were made using the FE-program 
ANSYS for comparison with the test results. The model was 
generated with shell elements using symmetrical conditions. 
The real stress-strain curve of the tensile tests was implemented 
as material law.  

The FE-calculations show a good agreement for the curves 
in the elastic range. The calculation with the perfect model 
achieves a maximum force of F = 440 N and ends with a 
deflection of u = 37 mm. For the calculation with 
imperfections, at first the buckling mode has to be selected, 
which qualitatively shows the deformation pattern of the test. 
This is done by a buckling analysis. Quantitative values of the 
imperfections are based on the measured values of ovalisation 
(∆o). The force-deflection curve of the model with 
imperfections has at u = 27 mm a maximum force of 
F = 407 N, which declines at u = 35 mm. Unlike to the perfect 

model this force-deflection curve extends right into the 
softening region, but the decline in force, however, can not be 
seen so clearly in comparison to test pipe 1. 

The buckle shapes of test pipe 1 and of the FE-calculation 
with imperfect model are compared in Fig. 3. The start of 
buckling was located on the compression side near midspan of 
the pipe. It can be recognized that the position and form of the 
buckles agree very well with the test result. 

 

 
Figure 3: Comparison of buckling forms for pipe 1 
 

In case of pipe 2 an internal pressure of P = 15 bar was 
applied via filling the pipe with water using a hand-operated 
pump. The ratio of the hoop stress to the yield strength was 
σΘ / σy = 0.45. Subsequently the imposed deflection was 
increased, whereas the internal pressure was kept constant. At 
u = 45 mm, where pipe 1 already showed failure due to local 
buckling, the imposed deflection was stopped, to inspect the 
surface of the pipe. No significant buckling was discovered. 
Only at approx. u = 60 mm several ripples could be recognized 
along the pipe axis on the compression side. At u = 76 mm the 
deformation of a single ripple (wave) increased and a buckle 
became more significant, and bulged outwards due to the 
stabilization caused by internal pressure. At the same time a 
decrease for the reaction force could be observed at the load 
cells.  
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Figure 4: Force-Deflection curves for pipe 2 
 

In comparison to pipe 1 greater deflections could be 
achieved without stability failure both in the test as well as in 
the simulation due to the increased buckling resistance caused 
by the internal pressure. The numerical simulation with the 
perfect model reaches a maximum value of F = 430 N at 
u = 62 mm (see Fig. 4). In the case of the calculation with 
imperfections the maximum reaction force is F = 407 N. 
Contrary to the test result, both numerical force-deflection 
curves show no significant drop in force where the single 
buckle occurred in the test. The reason for this difference can 
be explained with the slightly pressure reduction due to the 
increase of volume. Because the pressure reduces during the 
test the increased buckling resistance is decreased again and 
leads to local buckling. If this effect of a slightly pressure 
reduction during the imposed deflection is taken into account in 
the FE-simulation, a single buckle and also a drop in force 
could be observed like in the test.  

The buckling shapes of test pipe 2 and the FE-calculation 
with imperfections are compared in Fig. 5. Buckling begins on 
the compression side near the middle of the pipe. It can be seen 
that the position and form of the buckles correspond very well. 
The ripples that are built up along the pipe axis in the 
prebuckling phase are also visible in the FE-simulation. In 
comparison to the test without internal pressure (pipe 1) the 
buckling behavior in the case of tests with internal pressure 
(pipes 2 to 8) is fundamentally different, because the hoop 
stresses due to internal pressure counteract the ovalising forces 
due to bending and so the buckling occurs for greater imposed 
deformations. The buckling figures under internal pressure are 
characterized by the establishment of a single buckle which 
develops outwards in a relatively narrow area with regard to the 
longitudinal direction of the pipe. The smoothing effect of the 
internal pressure on the imperfections leads to a further 
stabilisation of the tubular steel.  

The scenario of a pressure drop was investigated at the 
pipe 3 in the elasto-plastic range. At first the pipe was 
deformed under an internal pressure of P = 15 bar up to a 
vertical deflection of u = 49 mm. After that the pipe was 
unloaded from P = 15 to 1 bar, while the imposed deformation 
was kept constant. The pipe cross-section remained stable 
thereby and no local buckling occurred. Only the reaction 
forces dropped back to the load level in relation to the actual 
static yield limit.  
 

 
Figure 5: Comparison of buckling forms for pipe 2 
 

After renewed pressure build-up to P = 15 bar the imposed 
deformation was increased further. At u = 67.5 mm the internal 
pressure was again reduced to 1 bar for the second time, 
whereby the pipe still remained stable and no buckling 
occurred. Only when the deflection u was further increased 
without pressure buckling failure immediately occurred in the 
compression zone. The form of buckling resembled that of the 
pipe 1 without internal pressure.  
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Figure 6: Force-Deflection curves for pipe 3 with pressure 
drop 
 

This elasto-plastic bearing behavior could be confirmed 
with an FE-calculation, where a pressure drop at u = 49 mm 
and u = 67.5 mm was simulated. At both stop positions the pipe 
remained stable. Only in the case of a further increase without 
internal pressure a sudden buckle failure occurred similar to 
that in the case of the tested pipe 3. This phenomenon could be 
repeated using tests with the pipes 5 and 8 for different internal 
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pressures. From this it can be concluded that during a further 
increase of imposed deformations (ů > 0) there must be an 
internal pressure but this is not necessary for the stability if the 
deformation is kept constant (ů = 0). A further increase of 
deformations must not occur in pressureless conditions, since 
the supporting effect of internal pressure during development of 
further plastic strain increments is missing. 

Furthermore, a gradual pressure reduction due to the 
increase in the volume of the pipes could be observed in the 
elasto-plastic range. This led to a gradual increase in the 
reaction forces, because assuming the Mises flow-hypothesis 
and a biaxial stress state a greater longitudinal stress (bending) 
due to the drop in the hoop stress (internal pressure) could be 
allowed considering the actual equivalent stress (see Eq. 2). 
 

2 2
V L LΘ Θσ = σ + σ − σ ⋅ σ     (2) 

 
 
STRAIN-LIMITS OF SCALE MODEL TESTS 

 
For the following analytical method a limit criterion based 

on the consideration of plastic strains is needed. Fig. 7 shows 
the critical strains of the tested pipes as a function of the 
internal pressure. The values for εcr originate from the strain 
gauges on the compression side for the longitudinal direction 
(axial direction) at the beginning of buckling. A good 
approximation to the experimental limit strain curve is provided 
by equation 4. But for a limit criterion in the analytical method 
the empirical equation 3 is used because the values calculated 
with equation 3 are more on the safety side for higher pressure 
ratios. 
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Figure 7: Critical strain limits for plastic shell buckling 
 
 

for rm/t = 65.6: 
2

cr
m y

t
0.2 0.01

r
Θσ

ε = ⋅ + ⋅
σ

⎛ ⎞
⎜ ⎟
⎝ ⎠

  (3) 

 

  
3

cr
m y

t
0.2 0.02

r
Θσ

ε = ⋅ + ⋅
σ

⎛ ⎞
⎜ ⎟
⎝ ⎠

  (4) 

 
The first term of Eqs. 3 and 4 applies for the case of pure 

bending. The second term takes into account the increased 

buckling resistance due to internal pressure depending on the 
ratio of hoop stress to elastic yield strength. In literature [2, 8] 
for plastic shell buckling at pure bending a range for the critical 
buckling strains of  
 

cr
m m

t t
0.2 0.4

r r
⋅ < ε < ⋅      (5) 

 
is given. The increased buckling resistance due to internal 
pressure is taken into account according to a suggestion of 
Gresnigt [5] in semi-empirical equations (Eqs. 6 and 7). Based 
on test results values for buckling strains are indicated as 
dependent on pipe slenderness, Young’s-modulus and internal 
pressure. 
 

2

cr:
Pt 1 t P r

If 0.25 0.0025 3000
r 60 r E t P

ε =
⋅

> ⋅ − + ⋅ ⋅
′ ′ ⋅

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (6) 

2

cr
Pt 1 t P r

If : 0.1 3000
r 60 r E t P

⋅
≤ ε = ⋅ + ⋅ ⋅

′ ′ ⋅
⎛ ⎞
⎜ ⎟
⎝ ⎠

  (7) 

  

with
rr 3a1

r

′ =
−

      (8) 

 
In comparison to the equations 3 and 4 Gresnigt [5] already 

gives design values and takes the ovalisation into account 
(Eq. 8).  

 
 

ANALYTICAL SOLUTION VERSUS TEST RESULTS  
 
The analytical method is based on differential equations 

(D.E.) for beams. The static system and loading conditions of 
the test pipes are represented in Fig. 8. It has to be taken into 
account that a longitudinal tensile force N is produced by the 
internal pressure on the pipe end caps. Because of that the 
general differential equation for beams with longitudinal tensile 
force (Eq. 9) is used for the analytical solution. 

 

length  L

D/t
Ipipe

F (x)F (x)

x, u

1 2

z, w

N 
(external 

tensile force) 

N 
(external 

compressive force) 

EI (x)P

Figure 8: Static system of model-scale tests with loading 
 
 

( )EI w (x) N w (x) F(x)′′′′ ′′⋅ + ⋅ =     (9) 
 

The solutions of the differential equation for w(x), φ(x), 
M(x) and Q(x) are calculated with trigonometrical constitutive 
functions as series expansions. No external forces N are applied 
(N = 0) in the test specimen. If N ≠ 0 a case differentiation is to 
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be made. Furthermore, the bending stiffness is not constant in 
the elasto-plastic range, so that the general D.E. is used with 
EI(x). For the consideration of greater deformations the exact 
differential geometrical relationship between the deflection 
w(x) and the curvature κ(x) is implemented:  
 

( )3/ 22

w (x)
(x)

1 w (x)

′′
κ =

′+
     (10) 

 
The analytical method consists of an elastic and elasto-

plastic part. The elasto-plastic calculation is carried out 
displacement-controlled and as an iterative method to 
determine the solutions for w(x), φ(x), M(x) and Q(x). The 
yield criterion according to v. Mises and the material law 
according to Prandtl-Reuss are chosen to consider the plasticity. 
The total axial strain is then the sum of the elastic strain and the 
plastic strain increments: 
 

n

tot el pl,i
i 1

(x) (x) (x)
=

ε = ε + ε∑     (11) 

 
The borders between elastic and plastic region are newly 

calculated in each iteration-step along the pipe axis (x-
direction). The reduction of the bending stiffness EI(x) 
depending on the strain values on the tensile side max εZ and 
compression side max εD takes place in the elasto-plastic range. 
For this purpose the integral of the inner bending moment to the 
actual strain condition is calculated on the maximum stressed 
pipe cross-section.  
 

2
Z Z

2
D D

M(x) 2 t r (max ) sin d

2 t r (max ) sin d

= ⋅ ⋅ ⋅ σ ε ⋅ θ ⋅ θ

+ ⋅ ⋅ ⋅ σ ε ⋅ θ ⋅ θ

∫
∫

   (12)  

 
Because the real stress-strain curve is implemented in the 

analytical method, the real stresses at each strain condition are 
determined (σZ = f(max εZ) and σD = f(max εD)). As a 
consequence of this no simplifying assumptions (e.g. ideal-
elastic, ideal-plastic) had to be implemented in the material law. 
The axial strain curves for the compression side at the midspan 
point of the pipe are compared in Figure 9. To compare the 
numerical solutions with the test results for the axial strain 
always the values for L/2 of the pipe were used. There is a very 
good agreement up to the elastic strain limit for the strain curve 
of pipe 1 with the numerically and analytically calculated strain 
curves. At approx. εcr = 3250 µm/m plastic shell buckling 
occurs on pipe 1 and after this the axial strain decreases 
(postbuckling range) because the strain gauges were not located 
at the local buckle. In the area of the local buckle strains will be 
much higher. FE-calculation with the perfect model shows very 
high strain values because the strain was taken from a point at 
midspan of the pipe where the local buckle occured.  
      The strain curve of the FE-calculation with imperfect model 
remains below the elastic strain limit. Using the analytical 
method according to Eq. 3 a critical strain value of εcr = 3050 
µm/m is established. Furthermore it can be seen that applying 
the analytical method the nonlinear increase in the axial strain 
is determined within the elasto-plastic range. 
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Figure 9: Comparison of the axial strain curves on the 
compression side 
  

In order to take the biaxial stress status due to bending and 
internal pressure and assuming von Mises yield criterion (see 
Eq. 2) the following equation is derived (shear stresses will be 
negligible): 
 

2 2 2
v L LΘ Θσ = σ σ+ σ − σ      (13) 

 
The longitudinal stresses σZ and σD are formulated as a 

function of the hoop stress σΘ and the equivalent stress σy: 
 

2

L Z;D v
v

1 0.75
2
Θ Θ= ±

⎛ ⎞σ σσ = σ σ − ⋅ ⎜ ⎟σ⎝ ⎠
   (14) 

 
To determine the maximum elastic strain increments in 

axial direction for the bending at the proportionality limit, the 
elastic strain increment of the longitudinal force as a result of 
cap pressure and traverse strain due to internal pressure are 
considered (N = positive for tensile force): 
 

Z
el,Z el

N P D P D
E EA 4 t E 2 t E

=
σ ⋅ ⋅ε − − + ν ⋅

⋅ ⋅ ⋅ ⋅
   (15) 

 

 
Figure 10: Stress-strain-curves for tensile and compressive 
range 
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The value εel,Z is the maximum tensile strain, which can be 
provided for the bending of the pipe within the elastic range 
(εel,D analog with Eq. 15 but with opposite sign).  

The stress-strain curves of the tensile- and compressive 
side are identical for P = 0 bar. If P ≠ 0 bar, then according to 
the Mises yield criterion different values are determined for the 
yield strength in the tension and compression zone of the pipe 
(see Fig. 10).  

The postbuckling behavior within the compression zone is 
approximated by an empirical formula (Eq. 16). It was derived 
with curve fitting for the tests carried out in this program. It has 
to be checked for other D/t ratio’s.  

The drop in stress for the compressive side is described 
depending on the ratio σΘ / σy and the critical strain value εcr. 
Because of this a simulated decrease in the reaction force 
occurs concerning the force-deflection curve. If the hoop stress 
is high, the reaction force will slightly drop within the 
postbuckling range. But if the hoop stress is low or zero, the 
reaction force decreases more distinct within the postbuckling 
range. 
 

D

y
cr

postbuckling( )

1 400 ( )

σΘ
σ

=
σε

+ ⋅ ε − ε

 for (ε > εcr)  (16) 

 
The results of the analytical method and of the tests with 

P = 0 und 15 bar are compared in Figure 11. In the case of the 
analytical calculations the strain-based limit criterion according 
to Eq. 3 is applied. For the case without internal pressure 
(pipe 1) a significant drop occurs after the critical strain has 
been reached on the compressive side. The force-deflection 
curve of pipe 1 does not reach the maximum value of the 
analytical method, because the influence of imperfections is not 
taken into account by the analytical method. The imperfections 
decrease the load bearing capacity significantly in the 
unpressurized condition, so the force-deflection curve of pipe 1 
is rather nonlinear.  
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Figure 11: Comparison of the analytical calculation with the 
tests  
 

In the case where P = 15 bar greater deflection and greater 
axial strains are reached before plastic shell buckling occurs. 
The region of postbuckling is reached with a slightly lower 
deflection in the analytical calculation, because according to 
Eq. 3 the value for the limit strain εcr at σΘ / σy = 0.45 lies 

below both test values and is therefore on the safer side. The 
drop in the reaction force of pipe 2 (P = 15 bar) and analytical 
calculation is smoother than in the case of pipe 1 (P = 0 bar) 
due to the stabilizing effect of internal pressure. The decrease in 
reaction force of pipe 3 is more distinct than in the case of 
pipe 2, because for pipe 3 the scenario of a pressure reduction 
in the elasto-plastic range was investigated, and from 
u = 67.5 mm it was further deformed pressureless. For this 
reason the buckle failure of pipe 3 after approx. u = 70 mm 
resembles rather the test without internal pressure (pipe 1), 
characterized by a steep decline in force. The curves of pipe 2 
and 3 show a better conformance with the analytical calculation 
in the prebuckling phase than the comparison for pipe 1, 
because the internal pressure causes a smoothing of the 
imperfections and thus the load-bearing capacity is not so 
markedly reduced. This elasto-plastic bearing behavior under 
internal pressure and imposed deformation could be verified by 
further tests (4 – 8) with a variation of internal pressure.  

 
 

TRANSFER TO REAL BOUNDARY CONDITIONS 
 
The experimental set-up for the test specimen is a closed 

system. An axial tensile stress acts at the pipe end caps 
resulting from internal pressure. The test specimen can be 
freely deformed in horizontal direction due to the boundary 
conditions at the pipe ends and thus follow a longitudinal 
change caused by bending without hindrance. The boundary 
conditions of a buried pipeline do not correspond with these 
test boundary conditions. A buried pipeline has basically no 
end caps and therefore also no longitudinal stresses resulting 
from internal pressure. Deflection forces associated with 
change in direction within bends of pipes are countered due to 
the embedding in the soil via friction over a short interval. 
Solely from the transverse contraction of the pipeline a 
resultant stress occurs in axial direction, which in the case of 
the material steel is equivalent to 30 % of the hoop stress 
caused by internal pressure.  

The ends of the test specimens are horizontally non-braced. 
This means that the axial displacement of the test specimen 
resulting from the upthrust curvature can occur without 
hindrance. This is not possible in the case of a buried pipeline. 
It can be assumed that the pipeline is laid straight and cannot 
shift due to soil friction, in order to give way to a strain as a 
result of bending. This causes tensile stresses to occur in the 
longitudinal direction of the pipeline, which have a favourable 
influence on the bending in the load case in question here, since 
they significantly relieve the pipeline cross-section in the 
bending pressure range.  

In order to be able to assign the findings gained in the tests 
to reality it is necessary to find a static system which reflects 
the real boundary conditions shown above with sufficient 
accuracy. Here the problem is posed that many soil mechanic 
parameters, which have an influence on the bedding conditions 
of the pipeline can either not be acquired or modelled within a 
Finite-Element-Analysis at all or only to a limited extent. 
Therefore the aim must be to develop a static system as simple 
as possible, which will manage with few and easily manageable 
parameters and nevertheless supply reliable results. A static 
system, which fulfils these boundary conditions, is represented 
in Fig. 12.  
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Figure 12: Real and idealised system 
 

A symmetrical bending curve is presupposed, which 
permits the utilization of symmetrical conditions. In the area in 
which the settlement deformation occurs, no soil friction is 
stated as it is assumed that the pipeline moves with the 
surrounding soil. Beyond the settlement area axial springs are 
set. The rigidity (CF) of the axial springs is derived from the 
bedding module of the soil surrounding the pipeline. For this a 
maximum spring force (FSLIDE) can act, which is proportional to 
the shear stress acting between pipeline and soil. In this way a 
sliding friction is simulated. Conventional Finite-Element-
Systems provide element types that are suitable for this. The 
imposed deformation is introduced by the half shells in the FE-
model similarly as in the test on the tension side of the pipe 
cross-section. Fundamentally, the same problems exist 
numerically in the case of concentrated loads into shell 
structures as in reality. However, is described above, the 
decisive stresses occur in the bending compressive zone and the 
loading at the half shells is at a sufficient distance away, so that 
the local effects resulting from the points of load application 
are of subordinate significance. 
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Figure 13: Comparison of different boundary conditions at 
different internal pressures 
 

Fig. 13 shows the system behavior assuming extreme 
boundary conditions. In comparison to this the force-
deformation diagram is assuming infinitely rigid axial bedding 
springs (Fix) and freely displaceable pipeline end (Free). A 
differentiation is made between an internal pressure of 0 bar 
and 30 bar. The ratio σΘ / σy for P = 30 bar is 0.9 (90 % of fy,k). 
For the load case P = 0 bar and non-braced ends with a 
deflection of u = 28 mm an abrupt decrease in load can be 
observed, which points to the snapping of local buckling and a 
stability failure. For the load case P = 30 bar and free pipeline 
already at a considerably imposed deformation a drop in load 
down to the negative range can be observed. This can be 

explained by the fact that due to imposed deformation an arch 
develops, in which forces associated with change in direction 
begin to act. As soon as these forces reach a significant 
dimension, they push the pipeline in the direction of the 
imposed deformation and lead to a breakthrough and to a 
system collapse. In the graphs P = 0 bar and P = 30 bar for the 
systems with infinitely rigid springs it is evident that the 
deflection can be infinitely increased in principle, without 
resulting in a decrease in strength and thus to a system collapse. 
This can be explained by the fact that due to the hindrance of 
the axial displacement of the pipeline by the upthrust 
deformation a lengthening and a significant axial stress are 
produced, which lead to a stabilisation. It is immediately 
evident, that the static system „buried pipeline“ will move 
between these two extreme limits. A pipeline section under 
consideration will never be non-braced in axial direction, but 
nevertheless it cannot be basically assumed that the 
displacement will be prevented 100%. As an example, pipeline 
regions near bends or not ideally straight laid pipelines could be 
mentioned. An estimate of the spring strength via the above-
mentioned bedding module parameter of the surrounding soil 
and maximum transferable shear stress between pipeline and 
soil permits a good calibration of the static system and so, too, 
a calculation of the pipeline systems stressed by settlement. 
Fig. 14 shows the result for P = 30 bar and soil friction. It can 
be seen that the assumption of a bedding rigidity (a pipeline 
buried in compressed sand was chosen) effectively prevents the 
breakthrough of the system. 
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Figure 14: Comparison of different boundary conditions at P = 
30 bar 

 
 

LIMIT STRAIN FOR REAL APPLICATIONS 
 
The tests have been carried out on the statically more 

sensitive system, caused by the chosen boundary conditions. As 
a result of the freely displaceable pipeline ends buckling occurs 
due to sufficiently large imposed deflection in the bending 
compressive zone and therefore to the collapse of the system. 
Because this system behavior can be excluded in reality, the 
test results for critical strain values represent a lower limit for 
the application for real design problems. The question of safety 
coefficients is not taken into account here. This aspect, 
however, can not be answered with a general validity because 
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there are great differences in the form of national regulations 
and in each case a suitable safety must be chosen. 

It has to be remarked, that pipelines under thermal loading 
will behave different. Under sub-zero conditions, the soil 
surrounding the pipe freezes and soil friction will be reduced to 
almost zero. High temperature pipelines, which are anchored 
due to soil friction will be subjected to axial compression which 
may be lead to increasing curvature in settlement areas. 

 
 

CONCLUSION 
 

Experimental and numerical investigations from an 
ongoing research project are presented about steel pipes 
exposed to internal pressure and additional loads.  

The investigations have shown that as far as the problem of 
the “Bending of a pipeline under internal pressure” is 
concerned this is not mainly a question of a stress problem but 
rather a problem of deformation capacity (e.g. buckling). The 
internal pressure has a supporting effect which significantly 
reduces the pipe’s susceptibility to buckling. 

It was achieved a good agreement between test results and 
numerical simulations. Even highly concentrated nonlinear 
states such as buckling patterns and various load histories were 
simulated correctly. Parallel to the numerical simulation it was 
possible to reproduce the bearing-behavior within the elasto-
plastic range analytically adopting differential relationships. It 
was possible to formulate a general approach to the indication 
of critical limit strains based on these investigations.  

The FE-Model calibrated to the tests was modified for the 
calculation of buried pipelines so that it was possible to take 
real boundary conditions into account. The axial bedding of the 
pipeline in the surrounding soil, which is decisive for the 
determination of strains in the case of settlement problems, 
could be simulated via spring-slide-elements, the rigidity 
parameter whereof being derived from the soil properties. This 
showed that the critical strains gained in the tests can be 
referred to as lower and therefore safe barrier for real 
applications. 

It was the aim to formulate generally valid principles. For 
this reason the investigations were carried out on the basis of 
characteristic values and safety coefficients are not included. 
These are to be adapted to meet the national guidelines and 
applications for real design problems. 
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