Fatigue of very large high-strength bolting assemblies in wind turbines

Rasmus Eichstädt
Prof. Peter Schaumann

Lyngby, 26.06.2017
Outline

- High-strength bolts in wind turbines
- Experimental fatigue assessment
 - Test results on HV-bolt sets M36 and M64
 - Validation of normative S-N curves
- Analytical fatigue assessment
- Conclusions
Outline

- High-strength bolts in wind turbines
- Experimental fatigue assessment
 - Test results on HV-bolt sets M36 and M64
 - Validation of normative S-N curves
- Analytical fatigue assessment
- Conclusions
Bolted ring-flange connections in wind turbines

- Up to 200 high-strength bolt assemblies (System HV) per connection
- High loads with large number of load cycles
Preloading and hot-dip galvanizing

Preloading for limitation of fatigue loads

- Nominal preload $F_{p,C}^* = 0.7 \cdot R_{p0.2} \cdot A_{sp}$
- High mean stress affects the fatigue strength of bolts

Hot-dip galvanizing for corrosion protection

- Lower fatigue strength as uncoated structural components
- Fatigue cracks initiated at shrinkage cracks in the zinc layer

Limited validation of fatigue characteristics and normative S-N curves for large bolt diameters

Source: Simonsen (2015)
Outline

- High-strength bolts in wind turbines
- Experimental fatigue assessment
 - Test results on HV-bolt sets M36 and M64
 - Validation of normative S-N curves
- Analytical fatigue assessment
- Conclusions
Fatigue tests on large-size HV-bolt sets

- M36 and M64 HV-bolt sets (10.9), rolled before head treatment
- Fatigue tests with constant stress amplitudes and high mean stress
 \[S_m = 0.7 \cdot R_{p0.2} = 630 \text{ N/mm}^2 \]
- Test series for 3 boundary layer conditions:
 - Black bolts (B)
 - Normal temperature hot-dip galvanized (NT)
 - High temperature hot-dip galvanized (HT) only M36

 Influence of hot-dip galvanizing

 Assessment of the “size effect”
Fatigue tests on large-size HV-bolt sets

M36 - tests

High frequency pulsator

- Mean load 515 kN
- Testing frequency ca. 50 Hz
- Over 100 specimens

![M36 test setup](image)

M64 - tests

Servo-hydraulic testing machine

- Mean load 1680 kN
- Testing frequency 2-4 Hz
- 18 specimens

![M64 test setup](image)
Fatigue tests on HV-bolt sets M36

Mean stress $S_m = 0.7 \cdot R_{p0.2} = 630$ N/mm2

- 50% Survival probability
- Rupture
- Run-out

Decrease of fatigue strength in accordance with guideline VDI 2230

Rasmus Eichstädt - Fatigue of very large high-strength bolting assemblies in wind turbines
Fatigue tests on HV-bolt sets M64

Results in comparison to M36 bolts

Black bolts

Mean stress $S_m = 0.7 \cdot R_{p0.2} = 630 \text{ N/mm}^2$

Survival probabilities:
- \ldots $Ps = 50 \%$
- \ldots $Ps = 10 \%$
- \ldots $Ps = 90 \%$

Transition region to endurance limit

Load cycles $N [-]$

Nominal stress amplitude $S_a [\text{N/mm}^2]$

Transition region to endurance limit

Run-outs

$5 \cdot 10^5$

HCF - Range

Fatigue tests on HV-bolt sets M64
Fatigue tests on HV-bolt sets M64

Results in comparison to M36 bolts

NT-galvanized bolts

Mean stress $S_m = 0.7 \cdot R_{p0.2} = 630 \text{ N/mm}^2$

Survival probabilities:
- $Ps = 50 \%$
- $Ps = 10 \%$
- $Ps = 90 \%$

Load cycles $N \ [\text{-}]$

Nominal stress amplitude $S_a \ [\text{N/mm}^2]$

Transition region to endurance limit

Run-outs

HCF - Range

$5 \cdot 10^5$
Fatigue tests on large-size HV-bolt sets

Comparison to S-N curves from Eurocode 3

Hot-dip galvanized bolts

Nominal stress amplitude $S_a \text{[N/mm}^2\text{]}$

Load cycles $N \text{[-]}$

Rupture M36
Rupture M64
Rupture M48 (Marten)

Run-outs

Size reduction:

$\Delta S_{c,\text{red}} = \left(\frac{30}{\varnothing} \right)^{0,25} \cdot \Delta S_c$

M36: $0,96 \cdot \Delta S_c$
M48: $0,89 \cdot \Delta S_c$
M64: $0,83 \cdot \Delta S_c$

Hot-dip galvanized bolts

Fatigue of very large high-strength bolting assemblies in wind turbines
Fatigue tests on large-size HV-bolt sets

Evaluation of FAT-class and size-reduction acc. to Eurocode 3

M36 HV-bolts (tZn NT)

Nominal stress range ΔS [N/mm²]

- Rupture
- Run-out
- P_s,50%
- P_s,95%

Regression w/ fixed slope $m = 3$

$\Delta S (N = 2 \cdot 10^6) = 51.9$ N/mm²

ΔS_c (FAT 50, M36) = 47.8 N/mm²

EC3 – FAT 50 (w/o reduction)

Size reduction of EC3 FAT 50

Char. fatigue strength ΔS_c (N = 2 $\cdot 10^6$) [N/mm²]

Bolt diameter [mm]

Test result

Rasmus Eichstädt - Fatigue of very large high-strength bolting assemblies in wind turbines
Fatigue tests on large-size HV-bolt sets

Evaluation of FAT-class and size-reduction acc. to Eurocode 3

Nominal stress range ΔS [N/mm²] vs. Load cycles N [-]

- $\Delta S (N = 2 \cdot 10^6) = 48.4$ N/mm²
- $\Delta S_c (\text{FAT } 50, \text{M36}) = 44.5$ N/mm²

Regression w/ fixed slope $m = 3$

Size reduction of EC3 FAT 50

- w/o upper HCF test level
- $\Delta S_c (\text{FAT } 50, \text{M36}) = 44.5$ N/mm²

Rupture
- Run-out
- $P_s,50\%$
- $P_s,95\%$

M48 HV-bolts (tZn NT)

Bolt diameter [mm]

EC 3 FAT 50
- Test result

ForWind
Center for Wind Energy Research

Rasmus Eichstädt - Fatigue of very large high-strength bolting assemblies in wind turbines
Fatigue of very large high-strength bolting assemblies in wind turbines

Fatigue tests on large-size HV-bolt sets

Evaluation of FAT-class and size-reduction acc. to Eurocode 3

- **M64 HV-bolts (tZn NT)**
- **EC3 – FAT 50 (w/o reduction)**
- Regression w/ fixed slope \(m = 3 \)
- \(\Delta S (N = 2 \cdot 10^6) = 48,0 \text{ N/mm}^2 \)
- \(\Delta S_c (\text{FAT 50, M36}) = 41,4 \text{ N/mm}^2 \)
- \(\text{Char. fatigue strength } \Delta S_c (N = 2 \cdot 10^6) \text{ [N/mm}^2] \)
- \(\text{Load cycles } N \text{ [-]} \)
- \(\text{Char. fatigue strength } \Delta S_c \text{ [N/mm}^2] \)
- \(\text{Bolt diameter } \text{[mm]} \)

Test result

- **EC 3 FAT 50**
- **w/o upper HCF test level**
Fatigue tests on large-size HV-bolt sets

Comparison to S-N curves from Eurocode 3

Black bolts

Size reduction:

\[\Delta S_{c,\text{red}} = \left(\frac{30}{\varnothing} \right)^{0.25} \cdot \Delta S_c \]

\(M36: 0.96 \cdot \Delta S_c \)
\(M64: 0.83 \cdot \Delta S_c \)
Outline

- High-strength bolts in wind turbines
- Experimental fatigue assessment
 - Test results on HV-bolt sets M36 and M64
 - Validation of normative S-N curves
- Analytical fatigue assessment
- Conclusions
Fatigue calculation with local concept (strain-life)

FE-Model

Nominal loading

Local stress σ \[N/mm^2 \]

Local strain ε \[- \]

Local hysteresis

Damage parameter S-N curve (P_{SWT})

$$P_{SWT} = \sqrt{(\sigma_a + \sigma_m) \cdot \varepsilon \cdot E}$$

Load cycle number until initial crack N_i [-]

Non-linear material implementation

Preloading:
monotonic material law

Cyclic loading:
cyclic stabilized material law

Base material fatigue
strain-life curve

Rasmus Eichstädt -
Fatigue of very large high-strength bolting assemblies in wind turbines
Fatigue calculation with local concept

Initial crack

Initial crack with cyclic relaxation

Crack propagation until rupture (additional)

\[S_m = 0.7 \cdot R_{p0.2} \]

Test M36 (Ps, 50%)

Analytical:

- Initial crack (w/o relax.)
- Initial crack (with relax.)
- Rupture (with relax.)

Nominal stress amplitude \(S_a \) [N/mm²]
Load cycles \(N \) [-]

Load cycles \(N \) [-]

Local stress \(\sigma \)
Local strain \(\varepsilon \)

\[\Delta \sigma_{o,Relax} \]
\[\Delta \varepsilon_a \]
Fatigue calculation with local concept

\[S_m = 0.7 \cdot R_{p0.2} \]

Test M36 (Ps,50%)

Initial crack (w/o relax.)

Initial crack (with relax.)

Rupture (with relax.)

Load cycles N [-]

Nominal stress amplitude \(S_a \) [N/mm²]

Effect of hot-dip galvanizing is not covered in analytical approach!
Outline

- High-strength bolts in wind turbines
- Experimental fatigue assessment
 - Test results on HV-bolt sets M36 and M64
 - Validation of normative S-N curves
- Analytical fatigue assessment
- Conclusions
Conclusions

- Fatigue capacity of high-strength, large-size bolts significantly affected by hot-dip galvanizing
- EC 3 fatigue class FAT50 confirmed for bolts up to diameter M64
- Size reduction necessary, better fatigue classification of uncoated bolts must be seen critically
- Analytical calculations with local concept show good approximation to experimental results for bolts w/o boundary layer influence
Thank you!

Research partner:

Funding:

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages